工程物探

直升機大比例尺航空物探在深部找礦中的應用前景

  國外許多大型礦山勘探開采深度已超過1 000m, 如南非在4 000 m以下的深度找到了金礦, 澳大利亞在3 000 m深度發現了儲量大于300萬噸的富銅礦床[ 1] 。我國絕大多數礦山的開采深度一般不足500 m, 考慮到現行勘探開采技術在500 ~1 000 m深度范圍內的可行性, 礦山無疑存在深部第二找礦空間、第三找礦空間。我國銅陵冬瓜山大型銅礦床的產出深度在1 000 m左右[ 1] , 大冶鐵礦在1 000 m左右見到第三臺階厚大礦體[ 2]等, 我國現有礦山的深部仍具有極大的找礦潛力。
 
  用于深部隱伏礦勘查的地面金屬礦物探方法主要有高精度重力勘查、高精度磁測、瞬變電磁法勘查、可控源音頻大地電磁、三頻激電、井中聲波透視、地下電磁波、深穿透地球化學方法等[ 3] 。由于重要金屬礦區及外圍大多地形復雜, 地面物探工作效率很低, 施工困難, 多數地面物探測量工區分布面積偏小, 在一定程度上影響了礦山深部及外圍找礦效果。
 
  2003年以來, 采取引進和自行研制相結合的方針, 成功地研制集成了吊艙式直升機頻率域電磁、磁綜合測量系統和硬架式直升機磁、放綜合測量系統,投入生產并獲得了良好的勘查效果。目前國內直升機最大勘探比例尺已達1∶5 000, 并且這兩套直升機航空物探測量系統可以沿地形起伏飛行, 探頭離地高度最低可達30 ~ 80 m, 采樣間隔可達1 ~ 3 m左右, DGPS平面定位精度好于1 m, 尤其適合于地形復雜地區的礦產勘查工作。同地面物探相比, 直升機測量具有速度快、測量精度高、信息豐富、異常分辨率高等優點。在礦區做較大的測量面積不僅可對礦區深部磁性地質體產生的弱緩異常反映完整, 而且便于磁異常綜合對比分析, 有助于發現礦區周圍未知礦床。大冶1∶1萬高分辨率航磁找礦成功經驗表明, 以直升機物探方法獲取的高精度資料為基礎,采用精細反演方法, 可以實現深部找礦目的。
 
  1 直升機航空物探方法
 
  1.1 測量系統組成
 
  1.1.1 吊艙式系統
 
  吊艙式直升機頻率域電磁、磁測量系統是我國在從加拿大引進的IMPULSE六頻電磁儀和磁力儀基礎上, 自行集成的一套測量系統。該系統由IMPULSE頻率域電磁系統、CS-3 磁力儀、DS3 數據收錄系統、GPS導航定位系統、高度測量系統、模擬記錄儀和電源系統組成, 可同時測量電磁、磁2 種參數, 其性能指標達到了世界同類產品的先進水平[ 4] 。
 
  IMPLUSE電磁系統為新型的數字化和寬帶系統, 有2對發射和接收線圈(水平共面線圈對和垂直同軸線圈對), 每對線圈的發射磁矩為800 A·m2 , 發射3個頻率, 頻率范圍870 ~ 23 250 Hz, 其中水平共面線圈對層狀大地的導電率有較高的分辨率, 而垂直同軸線圈對垂直導體分辨率較高。該系統記錄6個頻率的電磁響應, 采樣率每秒30次, 在直升機時速120 km/h時, 相當于沿著飛行測線每1m一個采樣。
 
  2004年在內蒙古烏達煤礦區進行了國內首次吊倉式直升機航空磁、電磁綜合測量。測線飛行采用沿地形起伏飛行的方法, 測網密度為50 m×250 m, 測線間距50 m。直升機吊艙(探頭)平均離地高度49 m;導航定位精度好于2.58 m;測線偏航距通常小于20 m。
 
  1.1.2 硬架式系統
 
  硬架式直升機航磁測量系統是中國國土資源航空物探遙感中心新研制、具有國際先進水平的航空物探測量系統。
 
  機載航空物探設備包括HC— 2000K航空磁力儀、DSC— 1航磁補償儀、GPS導航定位設備、GPS差分定位設備、數據顯示設備等。
 
  2005年在湖北黃石地區進行了硬架式直升機航空物探(磁)測量工作① 。測線飛行采用沿地形起伏飛行的方法, 測線間距100 m。導航定位精度好于1 m;平均飛行高度為144 m, 測線偏航距通常小于11 m, 測量總精度小于2nT。
 
  1.2 系統機動靈活
 
  在直升機爬升率允許的范圍內, 直升飛機升降自如, 非常適合于目的性比較強的小規模精細探測;由于直升機轉彎靈活, 也可以多次重復飛行, 直到得到滿意結果為止。在一些地形陡峭的地區, 甚至可以利用慢速和懸停功能, 精細獲取航空物探測量數據, 這是固定翼飛機無法比擬的。
 
  盡管在海拔高度2 500 m以上的高原地區, 直升機爬升率一般為2.5 m/s左右, 遠低于其通常5m/s左右的爬升率, 但是直升機水平飛行速度低的特點使其在相同的距離上贏得了更充足的爬升時間, 一般可以贏得比Y-12等固定翼飛機多一倍的爬升時間, 因此直升機航空物探系統在山前和山后飛行高度也可以明顯降低, 真正實現隨地形起伏飛行方式。圖1為湖北黃石地區硬架式直升機航空物探系統飛行高度(50 m過山頭)曲線和固定翼飛機最大低飛理論曲線對比圖。固定翼最大低飛高度理論曲線設計依據主要是飛機地速7.5 m/s, 爬升率5m/s, 過山頭高度100 m。由圖可見, 直升機航空物探系統在山前和山后等地區降低飛行高度方面具有明顯的優勢。
 
  1.3 系統分辨率高
 
  由于直升機航空物探系統靈活、飛行高度低, 因此明顯提高了系統對探測目標物的分辨率。圖2是黑龍江料甸地區硬架式直升機航空物探系統試驗測量結果② 。區內南部為華力西晚期中粒至斑狀花崗巖、花崗閃長巖類;中部局部存在二疊系砂巖、厚層大理巖夾頁巖和石灰巖, 含石墨層;北部為白堊系中酸性和中基性火山巖。根據DEM資料分析, 在料甸試驗區7 km×20 km范圍內在1960年進行過1∶10萬航磁測量, 使用25型儀器, 目視領航, 平均飛行高度200 m。為了突出對比效果, 我們截取了1960年相同范圍固定翼系統測量數據, 并按照本次試驗所采用的相同方法和網格距形成了等值線平面圖(圖2a)。圖2b和圖2c是利用硬架式直升機航空物探測量數據繪制的等值線圖(飛行高度分別為100 m和30 m)。對比新老資料, 雖然磁場總體趨勢基本一致, 但老資料磁場信息較為平緩, 沒有反映出局部磁異常的分布特點。主要是當時的儀器精度低、測量高度大、收錄方式等問題造成, 部分原因也可能是因為40年來的礦產開改變了一些磁場形態;值得說明是, 硬架式直升機航空物探30 m飛行高度的測量結果比100 m飛行高度的測量結果信息更為豐富,同時磁場值也相應增大, 這進一步說明了直升機航空物探低高度飛行測量的高分辨率特性。
 
  2005年硬架式直升機航空物探系統在湖北黃石地區開展的1∶1 萬高分辨航空物探測量中, 共新編航磁異常97 處, 其中甲類礦致異常13 處, 而1993年該區曾開展1∶2.5萬航磁測量, 僅選編異常22處[ 5] 。其主要原因是由于儀器測量精度、定位精度的提高, 以及飛行高度的降低, 提高了系統的分辨率[ 5] , 發現了一些原有被遺漏的弱小異常, 異常信息量的增加為下一步找礦工作部署提供了依據。
 
  1.4 精細反演方法
 
  1.4.1 單剖面反演
 
  精細反演是指利用直升機航空物探高精度測量數據, 即通過詳細測量或收集測區內地表及井下各類巖石的物性資料, 采用二維[ 6] 或三維正演方法去除已知地質體引起的物探異常, 求取剩余異常和利用剩余異常反演地下地質體空間位置的方法技術
 
  1.4.2 多剖面聯合反演
 
  精細剖面反演可以依據航磁資料, 結合地面勘探線位置, 進行多剖面聯合反演。此種反演特點是在綜合考慮已知或推測礦體、磁性巖體在走向延伸情況, 特別是剖面旁測磁性體的影響前提下來設計磁性體斷面特征及走向延伸長度。因此, 能夠更加全面地推斷地下磁性體空間展布特征。
 
  2 深部找礦效果
 
  直升機航空物探系統分辨率高、多參數測量, 解釋中可以互相印證, 能夠減少異常多解性, 再加上測量面積較大, 可以從區域上分析解釋異常成因, 因而可以提供較為可靠的找礦信息。
 
  2004年航遙中心與加拿大INCO公司合作在遼東—吉南成礦帶的樺甸—和龍銅鎳成礦遠景地區的3個區塊開展了1∶2.5萬直升機電磁、磁綜合測量取得了明顯的效果, 確定了多處對尋找銅鎳礦有意義的找礦目標;2005年航遙中心在湖北黃石開展了1∶1萬硬架式直升機航磁測量, 依據精細解釋結果所布設的鉆孔, 已有三孔見礦, 分述如下。
 
  圖3是象鼻山礦段精細反演結果。Fe3 和Fe4是兩個新推斷的未知礦體。2006 年10月, 在Fe4礦體上布設的ZK21-8 孔, 于孔深721.98 ~ 770.37m間發現了6層鐵礦體, 累計厚14.8 m, 礦石礦物主要為磁鐵礦, 磁黃鐵礦、黃銅礦等, 鐵的品位目估為20% ~ 45%, 銅的品位目估為0.5%。采用同樣的方法, 在獅子山西側布設了ZK26-6孔于732 m見礦, 見鐵礦體厚度為4.44 m。
 
  圖4是龍洞礦段13勘探線反演結果。首先根據勘探線地質剖面圖及勘探線經過區的巖相變化,對圍巖進行計算, 其基本能產生背景場的異常曲線;然后再將現有鉆孔控制礦體(Fe1)、掛幫礦(Fe4)加入, 得出計算曲線與異常主尖峰仍有較大剩余異常存在。觀察異常曲線形態可以得出, 異常主峰較陡,故推斷強磁性體埋藏深度較淺, 同時Fe3所處位置均為年代較早鉆孔, 鉆孔深度不大, 并對應于主峰異常正下方, 通過反演計算也在淺部得出強磁性體, 故推斷在海拔標高-50 ~ -120 m附近存在Fe3鐵礦體。增加Fe3模型后, 在剖面9.4 km附近, 仍存在部分剩余異常, 結合成礦理論及相鄰12勘探線推斷成礦位置, 故推斷得出在海拔標高-580 ~ -680 m上下存在Fe2鐵礦體。2007年13線設計鉆孔位置(JY13-1)附近布設的ZK13-8 于孔深703.49 ~732.66 m之間見到3層鐵礦, 總厚度為11 m。
 
  ZK21-8、ZK26-6、ZK13-8孔見礦, 實現了大冶鐵礦深部找礦的又一次重要進展, 進一步證實了大冶鐵礦龍洞—象鼻山地段深部存在3個臺階成礦的認識, 增強了在深部找礦的信心。
 
  3 應用前景
 
  由于直升機航空物探系統靈活、分辨率高, 在國際上大多用于礦區、礦區外圍, 以及重點成礦靶區的精細測量工作, 并且在鐵礦、及多金屬深部找礦方面取得了明顯的效果;目前, 國內已經完成了幾個測區的直升機航空物探測量工作, 也取得了顯著的勘查效果, 并在大冶鐵礦的深部找礦中取得了突破。由于我國的鐵礦、多金屬礦區, 以及重點成礦靶區大多地形復雜, 地面施工困難, 礦區及外圍的區域性物探研究程度并不高, 為了提高資源評價進程, 開展直升機航空物探測量是十分必要的。
 
  3.1 鐵礦
 
  我國鐵礦資源勘探程度總體呈現東高、西低, 鞍本、邯邢、寧蕪、魯中、鄂東等鐵礦區, 勘探和詳查礦區可達87%;勘探程度較低的遼西、五臺、密懷、蒙中, 以及西部地區的祁連山、阿爾泰山、東西天山等,多數礦區僅達到普查階段。我國鐵礦床勘探深度,絕大部分在250 ~ 700 m之間, 平均500 m, 其中東部地區部分礦區大于700 m, 個別達1 000 m, 西部地區不少礦區小于200 m。東部地區絕大多數鐵礦床, 礦體沿走向和傾向延伸(深)很大, 外圍和隱伏區找礦有望, 重點是鞍本、冀東等鐵礦化集中區, 擴大鐵礦儲量, 延長礦山服務年限。中、西部地區的五臺、蒙中、東西天山、阿爾泰山以及東部地區的遼西等成礦區, 工作程度低, 是今后找礦重點, 有望發現一批新的鐵礦資源基地。
 
  3.2 多金屬礦
 
  近年來, 遼寧青城子鉛鋅礦經過綜合研究和勘查, 在礦區外圍發現了一系列大中型金礦床, 累計探明儲量近200 t, 使青城子地區一躍成為超大型金銀多金屬礦田;江西德興銅礦外圍發現的金山、銀山等大型金礦, 探明資源儲量近百噸。
 
  由于在我國的成礦遠景區帶中的礦化蝕變帶、銅及多金屬礦床通常具有一定的導電性, 若能夠在我國的重點銅及多金屬礦山及外圍開展高分辨率的直升機航空物探綜合測量, 充分利用航空電磁測量速度快, 工作部署面積大, 數據成果反饋迅速的優勢, 結合已知礦區電磁異常找礦模型, 快速對礦區外圍及有利礦帶的延伸區域開展評價, 就有可能發現新的礦產資源基地。
 
  3.3 找礦靶區
 
  中國地調局確定的16個重點金屬找礦區帶中劃分的許多成礦遠景區及靶區, 由于地形復雜、地質和物探研究程度受到限制。航空物探勘查多為20世紀70年代前后開展的固定翼航空磁測、定位精度較低、測量比例尺多為1∶20萬, 少數為1∶5萬, 且飛行高度較大, 很可能遺漏許多有找礦意義的異常。
 
  并且受當時技術條件限制, 物探異常評價較粗略, 精細反演工作很有限。另外在“16個重點區片”中有許多重要銅、及多金屬礦床, 如長江中下游成礦帶的銅陵銅礦、德興大型銅礦, 南嶺成礦帶的水口山銅礦, 以及豫西成礦區的中條山大型銅礦等, 川滇黔相鄰成礦帶的東川銅礦、大理銅錫礦等;因此, 在16個重點區片中的重點成礦靶區開展直升機航空物探測量十分必要。
 
  值得說明的是, 新發現礦區未開采前工業設施等人文干擾較少, 此時若能夠開展高分辨率航空物探測量, 有利于提取深部或盲礦體相關異常信息和外圍找礦預測工作。同時將其測量結果作為基礎地質資料進行存儲, 作為今后礦區進一步找礦勘探的原始背景資料, 可為礦山后續開發提供依據。
 
  4 結 論
 
  為適應國家經濟發展需求, 擴大我國礦產資源潛力, 發揮直升機航空物探速度快, 飛行高度低的優勢, 開展重點金屬成礦靶區及危機礦山區高分辨率航空物探勘查工作, 提供勘查區物探基礎調查資料,建立找礦模型, 擴大礦山儲量, 實現大比例尺找礦定位方法技術的突破, 爭取獲得重大找礦成果。